Bregnballe, J.: A guide to recirculation aquaculture – An introduction to the new environmentally friendly and highly productive closed fish farming systems. p.107, FAO and Eurofish International Organization, Rome (2022)
河合章,吉田陽一,木俣正夫: 循環濾過飼育水槽の微生物科学的研究-Ⅰ.魚の飼育に伴う水質ならびに微生物相の変化について, 日本水産学会誌, Vol. 30, pp. 55-62 (1964).
河合章,吉田陽一,木俣正夫: 循環濾過飼育水槽の微生物科学的研究-Ⅱ.濾過砂の硝酸化成作用について, 日本水産学会誌, Vol. 31, pp. 65-71 (1965).
Timmons, M. B. and Losordo, T. M. (eds): Aquaculture water reuse systems, engineering design and management, 333p, Elsevier, Amsterdam, (1994).
Sharrer, M., Rishel, K., Taylor, A., Vinci. B. J., and Summerfelt, S.T.: The cost and effectiveness of solids thickening technologies for treating backwash and recovering nutrients from intensive aquaculture systems, Bioresource Technology, Vol. 101, No., 17, pp. 6630-6641 (2010).
Guerdat, T. C., Losordo, T. M., Classen, J. J., Osborne, J. A., and DeLong, D. P.: An evaluation of commercially available biological filters for recirculating aquaculture systems, Aquacultural engineering, Vol. 42, No. 1, pp. 38-49 (2010).
Ebeling, J.M. and Timmons, M.B.: Recirculating aquaculture systems, Aquaculture production systems (Tidwell, J.H. Ed.), A publication of World Aquaculture Society, pp. 245-278, John Willey & Sons, Inc (2012).
Bronzi, P., Chebanov, M., Michaels, J.T., Wei, Q., Rosenthal, H., and Gessner, J.: Sturgeon meat and caviar production: Global update 2017, J. Appl. Ichthyol., Vol. 35, pp. 257–266 (2019).
European Market Observatory for Fisheries and Aquaculture Products, EUMOFA: Recirculating Aquaculture Systems, 45p., Publications Office of the European Union (2020).
Rakocy, J. E.: Aquaponics: integrating fish and plant culture, In Recirculating Aquaculture 2nd ed. (Timmons, M. B. and Ebeling, J. M. ed.), pp. 807-864, Cayuga Aqua Ventures, Ithaca, U.S. (2010).
Avnimelech, Y., Biofloc Technology — A Practical Guide Book (2nd ed.), 273p, The World Aquaculture Society, Baton Rouge, Louisiana, United States (2012).
Soaudy, Md. R., Ghonimy, A., Greco, L. S. L., Chen, Z., Dyzenchauz, A.,and Li, J.: Total suspended solids and their impact in a biofloc system: Current and potentially new management strategies, Aquaculture, Vol. 572, 739524, pp.1-12 (2024).
Summerfelt, S. and Vinci, B.: Basic Technical and Biological Elements of Recirculating Aquaculture Systems (2014) . https://makeway.org/wp-content/uploads/2015/03/Steve-Summerfelt-RAS-101.pdf.
鍵谷勤, 武本勝雄,宇山良公: アンモニアによるオゾンの光分解反応, 日本化学会誌, Vol. 12, pp. 1939-1943 (1976).
栗田工業 (株), よくわかる水処理技術, p. 99, 日本実業出版社 (2006).
Global production by production source Quantity (1950 - 2022) Food and Agriculture Organization of the United Nations https://www.fao.org/fishery/statistics-query/en/global_production/global_production_quantity
Rapport :Key figures from Norwegian Aquaculture Industry 2023 the Norwegian Directorate of Fisheries https://www.fiskeridir.no/English/Aquaculture/Statistics/Booklets
Tomonobu Senjyu, Takeshi Shingaki, and Katsumi Uezato.: “Sensorless Vector Control of Synchronous Reluctance Motors with Disturbance Torque Observer,” IEEE Transactions on Industrial Electronics, Vol. 48, No. 2, pp. 402-407, April 2001.
Mummadi Veerachary, Tomonobu Senjyu, and Katsumi Uezato, “Signal flow graph modelling and analysis of interleaved DC-DC parallel converters”, International Journal of Electronics, Vol. 88, No. 9, pp. 1015-1033, 2001.
Tomonobu Senjyu, Hitoshi Takara, Katsumi Uezato, and Toshihisa Funabashi.: “One-Hour-Ahead Load Forecasting Using Neural Network,” IEEE Transactions on Power Systems, Vol. 17, No. 1, pp. 113-118, February 2002.
千住智信, 高良仁之, 上里勝実, 舟橋俊久, 伊藤孝充: 「PI 制御器による分散型電源の負荷追従制御」 電気学会論文誌C, Vol. 122-C, No. 8, pp. 1333-1340, Aug. 2002.
千住智信, 末吉儀秀, 上里勝実, 藤田秀紀: 「風力発電システムにおける誘導発電機の故障電流解析」 , 電気学会論文誌B, Vol. 123-B, No. 5, pp. 608-615, May 2003.
S. Ueda, J. W. Chege, T. Ishibashi, S. Yamamoto, A. Uehara and T. Senjyu.: "Energy Management of Aquaculture Considering Load Unit Commitment Under Different Contract Power," 2024 13th International Conference on Renewable Energy Research and Applications (ICRERA), Nagasaki, Japan, 2024, pp. 977-981, doi: 10.1109/ICRERA62673.2024.10815149.
M. Sugimura, T. Senjyu, N. Krishna, P. Mandal, M. Abdel-Akher and A. M. Hemeida.: "Sizing and Operation Optimization for Renewable Energy facilities with Demand Response in Micro-grid," 2019 20th International Conference on Intelligent System Application to Power Systems (ISAP), 2019, pp. 1-5, doi: 10.1109/ISAP48318.2019.9065965.
一般社団法人中城村養殖技術研究センター - NAICe - Nakagusuku Aquaculture Innovation Center https://naice-okinawa.com/
Bapary, M.A.J. and Takemura, A.: Effect of temperature and photoperiod on the reproductive condition and performance of a tropical damselfish Chrysiptera cyanea during different phases of the reproductive season, Fisheries Science, Vol.76, pp.769-776 (2010).
Takeuchi, Y., Bapary, M.A.J., Igarashi, S., Imamura, S., Sawada, Y., Matumoto, M., Hur, S.P. and Takemura, A.: Molecular cloning and expression of long-wavelength-sensitive cone opsin in the brain of a tropical damselfish, Comparative Biochemistry and Physiology A, Vol.160, pp.486-492 (2011).
Nakamura, M., Nozu, R., Nakamura, S., Higa, M., Bhandari, R.K., Kobayashi, Y., Horiguchi, R., Komatsu, T., Kojima, Y., Murata, R., Soyano, K., Ogawa, S., Hirai, T., Matsubara, H., Tokumoto, T., Kobayashi, T., Kagawa, H., Adachi, S., Yamauchi, K. and Nagahama, Y.: Morphological and physiological studies on sex change in tropical fish: Sexual plasticity of the ovaries of hermaphroditic and gonochoristic fish, Galaxea, Vol.24, pp.5-17 (2022).
Zhu, Y., Fukunaga, K., Udagawa, S., Shimabukuro, A. and Takemura, A.: Effects of selected light wavelengths on the transcript levels of photoreceptors and growth-related hormones and peptides in the Malabar grouper Epinephelus malabaricus, Aquaculture Reports, Vol. 27, 101393 (2022).
Toyota, K., Matsushima, H., Osanai, R., Okutu, T., Yamane, F., Ohira, T.: Dual roles of crustacean female sex hormone during juvenile stage in the kuruma prawn Marsupenaeus japonicus, General Comparative Endocrinology, Vol.344, 114374 (2023).
Vera, L.M. and Migaud, H.: Continuous high light intensity can induce retinal degeneration in Atlantic salmon, Atlantic cod and European sea bass. Aquaculture, Vol. 296, No.1-2, pp.150-158 (2009).
Tian, H.Y., Zhang, D.D., Xu, C., Wang, F. and Liu, W.B.: Effects of light intensity on growth, immune responses, antioxidant capability and disease resistance of juvenile blunt snout bream Megalobrama amblycephala. Fish & Shellfish Immunology, Vol.47, No.2, pp. 674-680 (2015).
Wang, F., Dong, S., Dong, S., Huang, G., Zhu, C., & Mu, Y. The effect of light intensity on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, Vol. 234, No. 1-4, pp. 475-483 (2004).
Ruchin, A.B.: Environmental colour impact on the life of lower aquatic vertebrates: development, growth, physiological and biochemical processes. Reviews in Aquaculture, Vol.12, No.1, pp.310-327 (2015).
Wang, F., Dong, S., Huang, G., Wu, L., Tian, X., & Ma, S. The effect of light color on the growth of Chinese shrimp Fenneropenaeus chinensis. Aquaculture, Vol. 228, No. 1-4, pp. 351-360 (2003).
Zhu, Y., Fukunaga, K., Udagawa, S., Shimabukuro, A. and Takemura, A. Effects of selected light wavelengths on the transcript levels of photoreceptors and growth-related hormones and peptides in the Malabar grouper Epinephelus malabaricus. Aquaculture Reports, Vol.27, 101393 (2022).
Lee, J.Y., Roh, H.J., Lee, Y., Park, J., Kang, H.Y., Kim, Y.J., Yi, M., Nguyen, T.L. and Kim, D.H.: Optimization of green LED light intensity for accelerating wound healing in olive flounder Paralichthys olivaceus (Temminck et Schlegel). Aquaculture, Vol.569, 739344 (2023).
Al-Emran, M., Zahangir, M. M., Badruzzaman, M. and Shahjahan, M. Influences of photoperiod on growth and reproduction of farmed fishes-prospects in aquaculture. Aquaculture Reports, Vol.35, 101978 (2024).
Torao, M.: Effect of water temperature on the feed intake, growth, and feeding efficiency of juvenile chum salmon Oncorhynchus keta after seawater transfer. Aquaculture Science, Vol.70, No.1, pp.97-106 (2022).
Barton, B.A. and Iwama, G.K.: Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids. Annual Review of Fish Diseases, Vol.1, pp.3-26 (1991).
Azaza, M.S., Dhraïef, M.N. and Kraïem, M.M.: Effects of water temperature on growth and sex ratio of juvenile Nile tilapia Oreochromis niloticus (Linnaeus) reared in geothermal waters in southern Tunisia. Journal of Thermal Biology, Vol.33, No.2, pp.98-105 (2008).
Triantaphyllopoulos, K.A., Cartas, D. and Miliou, H.: Factors influencing GH and IGF-I gene expression on growth in teleost fish: How can aquaculture industry benefit? Reviews in Aquaculture, Vol.12, No.3, pp.1637-1662 (2020).
Liang, M., Feng, W., Chen, X., Tang, Y., Li, J., Li, W. Effects of different temperatures on growth and intestinal microbial composition of juvenile Eriocheir sinensis. Frontiers in Physiology, Vol.14, 1163055 (2023).
Silina, A.V. Effects of temperature, salinity, and food availability on shell growth rates of the Yesso scallop. PeerJ, Vol.11, e14886 (2023).
Bœuf, G. and Payan, P. How should salinity influence fish growth? Comparative Biochemistry and Physiology C, Vol.130, No.4, pp.411-423 (2001).
Zhu, Y., Negishi, R., Fukunaga, K., Udagawa, S., Shimabukuro, A. and Takemura, A.: Activation of the growth–IGF-1 axis, but not appetite, is related to high growth performance in juveniles of the Malabar grouper, Epinephelus malabaricus, under isosmotic condition. Comparative Biochemistry and Physiology A, Vol.283, 111456 (2023).
Hallali, E., Kokou, F., Chourasia, T.K., Nitzan, T., Con, P., Harpaz, S. and Cnaani, A.: Dietary salt levels affect digestibility, intestinal gene expression, and the microbiome, in Nile tilapia (Oreochromis niloticus). PloS One, Vol.13, No.8, e0202351 (2018).
Mugwanya, M., Dawood, M.A., Kimera, F. and Sewilam, H.: A review on recirculating aquaculture system: Influence of stocking density on fish and crustacean behavior, growth performance, and immunity. Annals of Animal Science, Vol.22, No.3, pp.873-884 (2022).
National Research Council: Nutrient Requirements of Fish, National Academies Press (1993).
Craig, S.R., Helfrich, L.A., Kuhn, D., and Schwarz, M.H.: Understanding Fish Nutrition, Feeds, and Feeding (2017).
Lall, S.P.: Chapter 6 - The Minerals, Fish Nutrition (Fourth Edition), R. W. Hardy and S. J. Kaushik, eds., Academic Press, pp.469–554 (2022).
Lovell, T.: Nutrition and Feeding of Fish, Springer US (1989).
UN FAO: History of Aquaculture, (1988). https://www.fao.org/4/ag158e/AG158E00.htm#TOC.
Hardy, R.W., Kaushik, S.J., Mai, K., and Bai, S.C.: Chapter 1 - Fish Nutrition—History and Perspectives, Fish Nutrition (Fourth Edition), R. W. Hardy and S. J. Kaushik, eds., Academic Press, pp.1–16 (2022).
Camacho-Rodríguez, J., Macías-Sánchez, M.D., Cerón-García, M.C., Alarcón, F.J., and Molina-Grima, E.: Microalgae as a potential ingredient for partial fish meal replacement in aquafeeds: nutrient stability under
different storage conditions, Journal of Applied Phycology, Vol.30, No.2, pp. 1049–1059 (2018).
Jobling, M.: Fish nutrition research: Past, present and future, Aquaculture International, Vol.24, No.3, pp.767–786 (2016).
Reynolds, C.W.: Flocks, herds, and schools: A distributed behavioral model. Computer Graphics, Vol.21, pp.25–34 (1987).
Takahashi, Y. and Komeyama, K.: Simulation of the capture process in set net fishing using a fish ‑ Schooling behavior model. Fisheries Science, Vol.86, pp.971–983 (2020).
Kooijman, S.A.L.M.: Dynamic Energy Budget Theory for Metabolic Organisation, 3rd Edition, p.514, Cambridge University Press (2000).
Ahuja, I., Dauksas, E., Remme, J.F., Richardsen, R., and Løes, A.K.: Fish and fish waste-based fertilizers in organic farming–With status in Norway: A review. Waste Management, Vol.115, pp.95-112 (2020)
Beheshti Foroutani, M., Parrish, C.C., Wells, J., Taylor, R.G., Rise, M. L., and Shahidi, F.: Minimizing marine ingredients in diets of farmed Atlantic salmon (Salmo salar): Effects on growth performance and muscle lipid and fatty acid composition. PloS one, Vol.13, No.9, e0198538 (2018).
Mo, W.Y., Man, Y.B., and Wong, M.H.: Use of food waste, fish waste and food processing waste for China's aquaculture industry: Needs and challenge. Science of the Total Environment, Vol.613, pp.635-643 (2018).
Stevens, J.R., Newton, R.W., Tlusty, M., and Little, D.C.: The rise of aquaculture by-products: Increasing food production, value, and sustainability through strategic utilisation. Marine Policy, Vol.90, pp.115-124 (2018).
Shahidi, F., Varatharajan, V., Peng, H., and Senadheera, R.: Utilization of marine by-products for the recovery of value-added products. Journal of Food Bioactives, Vol.6, (2019)
Bücker, F., Marder, M., Peiter, M.R., Lehn, D.N., Esquerdo, V.M., de Almeida Pinto, L.A., and Konrad, O.: Fish waste: An efficient alternative to biogas and methane production in an anaerobic mono-digestion system. Renewable Energy, Vol.147, pp.798-805 (2020).
Surya, P., Sundaramanickam, A., Nithin, A., and Iswarya, P.: Eco-friendly preparation and characterization of bioplastic films made from marine fish-scale wastes. Environmental Science and Pollution Research, Vol.30, No.12, pp.34174-34187 (2023).
Richter, I., Thøgersen, J., and Klöckner, C.A. Sustainable seafood consumption in action: Relevant behaviors and their predictors. Sustainability, Vol.9, No.12, 2313 (2017).
Hall, P. O. J., Holby, O., Kollberg, S. and Samuelsson, M.: Chemical fluxes and mass balances in marine fish cage farm, IV. Nitrogen, Marine Ecology Progress Series, Vol.89, pp.81-91 (1992).
森勝義: カキ養殖場の自家汚染の現状と対策, 水産増殖, Vol.47, No.2, pp. 173-180 (1999).
Suwa, R. et.al.: Use of positron-emitting tracer imaging system for measuring the effect of salinity on temporal and spatial distribution of 11C tracer and coupling between source and sink organs. Plant Science Vol. 175, pp. 210–216 (2008).
Food and Agriculture Organization of the United Nations: Globally Important Agricultural Heritage Systems (2024) https://www.fao.org/giahs/en
Verified Market Research https://www.verifiedmarketresearch.com/product/aquaponics-market/