Bongini P., Bianchini M., Scarselli F. (2021) Molecular graph generation with graph neural networks, Neurocomputing, 450, 242-252
Gómez-Bombar R., Wei J. N., Duvenaud D. et al (2018) Automatic chemical design using a data-driven continuous representation of molecules, ACS Cent. Sci. 4, 2, 268-276
Clevert D. A., Le T., Winter R. et al (2021) Img2Mol – accurate SMILES recognition from molecular graphical depictions, Chem. Sci. 12, 14174-14181
Huang G., Li J., Zhao C. (2018) Computational prediction and analysis of associations between small molecules and binding-associated S-nitrosylation sites, Molecules, 23, 954
Muegge I., Mukherjee P. (2016) An overview of molecular fingerprint similarity search in virtual screening, Expert Opin. Drug Discov. 11, 137-148
Carhart R. E., Smith D. H., Venkataraghavan R. (1985) Atom pairs as molecular features in structure activity studies: definition and applications, J. Chem. Inf. Comput. Sci., 25, 64–73
Nilakantan R., Bauman N., Dixon J. S. et al (1987) Topological torsion: a new molecular descriptor for SAR applications. Comparison with other descriptors, J. Chem. Inf. Comput. Sci., 27, 82–85
Capecchi A., Probst D., Reymond J.-L. (2020) One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome, J. Cheminform., 12, 43
Mendez D., Gaulton A., Bento A. P. et al (2019) ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Research, 47(D1), D930-D940
Kim S., Chen J., Cheng T., et al (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Research, 49(D1), D1388-D1395
Wishart D. S., Feunang Y. D., Guo A. C., et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Research, 46(D1), D1074-D1082
Kanehisa M., Furumichi M., Tanabe M., et al (2017). KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Research, 45(D1), D353-D361
Papadatos G., Brown N., Patel V., et al (2016). SureChEMBL: a large- scale, chemically annotated patent document database. Nucleic Acids Research, 44(D1), D1220-D1228
Irwin J. J., Tang K. G., Young J., et al (2020) ZINC20-A Free Ultralarge-Scale Chemical Database for Ligand Discovery. J. Chem. Inf. Model., 60, 6065-6073
Martin Y. C., Kofron J. L., Traphagen L. M. (2020) Do structurally similar molecules have similar biological activity? J. Med. Chem. 45, 19, 4350–4358
Aggarwal C. C., Hinneburg A., Kein D. (2001) On the surprising behavior of distance metrics in high dimensional space, International Conference on Database Theory – ICDT 2001, 420-434
永田靖、棟近雅彦、多変量解析法入門(ライブラリ新数学大系 E20)、サイエンス社
小西貞則、多変量解析入門――線形から非線形へ、岩波書店
松井秀俊、多変量解析(データサイエンス大系)、学術図書出版社
Towards data science, Understanding t-SNE by Implementation:https://towardsdatascience.com/understanding-t-sne-by-implementing-2baf3a987ab3/ [8] Lundberg S. M., Lee S.-I. (2017) A unified approach to interpreting model predictions. NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems, 4768-4777
Spiess A. N., Neumeyer N. (2010) An evaluation of R2 as an inadequate measure for nonlinear models in pharmacological and biochemical research: a monte carlo approach. BMC Pharmacol. 10, 6
金子弘昌、化学のためのPython によるデータ解析・機械学習入門、オーム社
川野秀一、松井秀俊、廣瀬慧、スパース推定法による統計モデリング(統計学 One Point 6)、共立出版
後藤俊、荒川正幹、船津公人 (2009) ポリマー設計のための物性推算法と逆解析手法の開発.Journal of Computer Aided Chemistry 10: 37
Gupta A., Müller A. T., Huisman B. J. H. et al (2018) Generative recurrent networks for de novo drug design. Mol. Inform. 37(1-2):1700111
Ishida S., Aasawat T., Sumita M. et al (2023) ChemTSv2: functional molecular design using de novo molecule generator. WIREs Comput. Mol. Sci. 13(6), e1680
Merk D., Friedrich L., Grisoni F. et al, (2018) De novo design of bioactive small molecules by artificial intelligence, Mol. Inform. 37:1700153
Brown N., Fiscato M., Segler M. H. S. et al, (2019) GuacaMol: benchmarking models for de novo molecular design, J. Chem Inf. Model. 59:1096-1108
Krenn M., Häse F., Nigam A. K. et al, (2020) Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach. Learn.: Sci. Technol. 1, 045024
Kochanski G., Golovin D., Karro J. et al (2017) Baysean optimization for a better dessert. Proceedings of the 2017 NIPS Workshop on Bayesian Optimization
永田靖、入門実験計画法、日科技連出版社
金子弘昌、Pythonで学ぶ実験計画法入門、講談社
Kondo M., Sugizaki A., Khalid M. I. et al (2021) Energy-, time-, and labor-saving synthesis of α-ketiminophosphonates: machine-learning-assisted simultaneous multiparameter screening for electrochemical oxidation. Green Chem. 23(16): 5823
Saito Y., Oikawa M., Nakazawa H. et al (2018) Machine-learning-guided mutagenesis for directed evolution of fluorescent proteins. ACS Synth. Biol. 7:2014-2022
今村秀明、松井孝太、ベイズ最適化 ―適応的実験計画の基礎と実践―、近代科学社
Kipf T. N., Welling M. (2017) Semi-supervised classification with graph convolutional networks. In 5th Int Conf Learn Represent
Ioffe S., Szegedy C. (2015) Batch normalization: Accelerating deep network training by reducing internal covariate shift. In 32nd Int. Conf. Mach. Learn. 448–456
Ulyanov D., Vedaldi A., Lempitsky V. (2016) Instance normalization: the missing ingredient for fast stylization. arXiv:1607.08022
Cai T., Luo S., Xu K. et al (2021) GraphNorm: a principled approach to accelerating graph neural network training. In Proc. 38th Mach. Learn. Res. 139:1204–1215
Srivastava N., Hinton G., Krizhevsky A. et al (2014) Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15:1929–1958
Akiba T., Sano S., Yanase T. et al (2019) Optuna: a next-generation hyperparameter optimization framework. In Proc 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2623–2631
Sundararajan M., Taly A., Yan Q. (2017) Axiomatic attribution for deep networks. In 34th Int. Conf. Mach. Learn. 7:5109–5118