Frank Rosenblatt. The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65:386–408, 1958.
David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning representations by back-propagating errors. Nature, 323:533–536, 1986.
Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943.
Shunichi Amari. A theory of adaptive pattern classifiers. IEEE Transactions on Electronic Computers, EC-16(3):299–307, 1967.
Benerard Widrow and Marcian E. Hoff. Adaptive switching circuits. 1960 IRE WESCON Convention Record Part 4, 5:96–104, 1960.
Yarin Gal. Uncertainty in Deep Learning. PhD thesis, University of Cambridge, 2016.
M. J. Turner, R. W. Clough, H. C. Martin, and L. J. Topp. Stiffness and deflection analysis of complex structures. Journal of the Aeronautical Sciences, 23(9):805–823, 1956.
Raymond H. Myers and Douglas C. Montgomery. Response Surface Methodology: Process and Product Optimization Using Designed Experiments. John Wiley & Sons, 3rd edition, 2009.
André I. Khuri, Raymond H. Myers, and Walter H. Carter. Response surface methodology: 1966–1988. Technometrics, 31(2):137–157, 1989.
北山哲士. 工学系のための最適設計法機械学習を活用した理論と実践. 共立出版, 2021.
M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378:686–707, 2019.
Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. In International Conference on Learning Representations, 2021.
Kazuo Yonekura, Kento Maruoka, Kyoku Tyou, and Katsuyuki Suzuki. Super-resolving 2d stress tensor field conserving equilibrium constraints using physics-informed u-net. Finite Elements in Analysis and Design, 213:103852, 2023.
Olgierd C. Zienkiewicz and Jianzhong Zhu. The superconvergent patch recovery (SPR) and adaptive finite element refinement. Computer Methods in Applied Mechanics and Engineering, 101:207–224, 1992.
O. C. Zienkiewicz and J. Z. Zhu. The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7):1331–1364, 1992.
Mark Drela. Xfoil: An analysis and design system for low Reynolds number airfoils. In Mueller T.J., editor, Low Reynolds Number Aerodynamics, volume 54 of Lecture Notes in Engineering, pages 1–12. Springer, Berlin, Heidelberg, 1989.
Ira H. Abbot and A. E. von Doenhoff. Theory of Wing Sections: Including a Summary of Airfoil Data. Dover Publications, 1959.
Kazuo Yonekura and Osamu Watanabe. A shape parameterization method using principal component analysis in application to shape optimization. Journal of Mechanical Design, 136:121401, 2014.
Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio and Yann LeCun, editors, 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014.
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 214–223. PMLR, 06–11 Aug 2017.
Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved training of wasserstein gans. In Proceedings of the 31st International Conference on Neural Information Processing Systems, volume 30, pages 5769–5779, 2017.
Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for generative adversarial networks. In International Conference on Learning Representations, 2018.
Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative adversarial networks, 2019.
Kazunari Wada, Katsuyuki Suzuki, and Kazuo Yonekura. Physics-guided training of gan to improve accuracy in airfoil design synthesis. Computer Methods in Applied Mechanics and Engineering, 421:116746, 2024.
Kazuo Yonekura. A short note on physics-guided gan to learn physical models without gradients. Algorithms, 17(7), 2024.
Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran Associates, Inc., 2020.
Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning using nonequilibrium thermodynamics. In Francis Bach and David Blei, editors, Proceedings of the 32nd International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR.
Kazuo Yonekura and Katsuyuki Suzuki. Data-driven design exploration method using conditional variational autoencoder for airfoil design. Structural and Multidisciplinary Optimization, 64(2):613–624, 2021.
Kazuo Yonekura, Kazunari Wada, and Katsuyuki Suzuki. Generating various airfoils with required lift coefficients by combining NACA and Joukowski airfoils using conditional variational autoencoders. Engineering Applications of Artificial Intelligence, 108:104560, 2022.
Kazuo Yonekura, Nozomu Miyamoto, and Katsuyuki Suzuki. Inverse airfoil design method for generating varieties of smooth airfoils using conditional WGAN-gp. Structural and Multidisciplinary Optimization, 65:173, 2022.
Kazuo Yonekura, Yuki Tomori, and Katsuyuki Suzuki. Airfoil shape generation and feature extraction using the conditional vae-wgan-gp. AI, 5(4):2092–2103, 2024.
A. Robinson and J. A. Laurmann. Wign Theory. Cambridge University Press, 2013.
Richard S. Sutton and Andrew G. Barto. 強化学習. 森北出版, 第2版edition, 2022.
Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013.
David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of go with deep neural networks and tree search. Nature, 529:484–489, 2016.
Kazuo Yonekura and Hitoshi Hattori. Framework for design optimization using deep reinforcement learning. Structural and Multidisciplinary Optimization, 60:1709–1713, 2019.
Kazuo Yonekura, Hitoshi Hattori, Shohei Shikada, and Kohei Maruyama. Turbine blade optimization considering smoothness of the mach number using deep reinforcement learning. Information Sciences, 642:119066, 2023.
寒野善博. 最適化手法入門. 講談社, 2019.
Kazuo Yonekura, Ryusei Yamada, Shun Ogawa, and Katsuyuki Suzuki. Hypervolume-based multi-objective optimization method applying deep reinforcement learning to the optimization of turbine blade shape. AI, 5(4):1731–1742, 2024.
北山哲士. 工学系のための最適設計法機械学習を活用した理論と実践. 共立出版, 2021.
Ramprasaath R. Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.
C.J.C.H. Watkins. Learning from delayed rewards, 1989.