設計技術シリーズ『デジタル電源の基礎と設計法―スイッチング電源のデジタル制御―』の訂正とお詫び

本書『デジタル電源の基礎と設計法―スイッチング電源のデジタル制御―』の記述に誤りがございました。 謹んでお詫び申し上げますとともに、以下のように訂正申し上げます。 科学情報出版㈱

【正誤表】

頁	行	誤	正
はじ めに	5	人口衛星	人工衛星
65	下から2	状態 1(S1:オン、S2:オフ)、 状態 2(S1:オフ、S2:オン)	状態 1(Q:オン、D:オフ)、 状態 2(Q:オフ、D:オン)
69	式 (3.116) と 式 (3.117) の間の行	境界条件は D²=1-D より	境界条件は D ₂ =1-D より
70	式 (3.120)	$\begin{split} &\frac{DV_{in}}{D_2} \Delta D_2 = V_{in} \Delta D + \left(D + D_2\right) \Delta V_{in} - D_2 \Delta V_o \\ &\Delta D_2 = \frac{D}{D_2} \Delta D + \frac{D_2 \left(D + D_2\right)}{DV_{in}} \Delta V_{in} - \frac{D_2^2}{DV_{in}} \Delta V_o \end{split}$	$\begin{split} \frac{DV_{in}}{D_2} \Delta D_2 &= V_{in} \Delta D + \left(D + D_2\right) \Delta V_{in} - D_2 \Delta V_o \\ \Delta D_2 &= \frac{D_2}{D} \Delta D + \frac{D_2 \left(D + D_2\right)}{DV_{in}} \Delta V_{in} - \frac{D_2^2}{DV_{in}} \Delta V_o \end{split}$
70	式 (3.121)	$\frac{d\Delta V_o}{dt} = \frac{T_s}{2LC} \left\{ 2V_{in} \Delta D + \left(2D + D_2\right) \Delta V_{in} - D_2 \Delta V_o \right\} - \frac{1}{C} \Delta I_o$	$\frac{d\Delta V_o}{dt} = \frac{D_2 T_s}{2LC} \left\{ 2V_{in} \Delta D + \left(2D + D_2\right) \Delta V_{in} - D_2 \Delta V_o \right\} - \frac{1}{C} \Delta I_o$
77	式 (4.1)	$V_{\text{sen}} = \frac{Z_1}{Z_1 + Z_2} V_o$	$V_{sen} = \frac{Z_2}{Z_1 + Z_2} V_o$
77	式 (4.2)	$V_{sen} + \Delta V_{sen} (t) = \frac{Z_1}{Z_1 + Z_2} (V_o + \Delta V_o (t))$	$V_{sen} + \Delta V_{sen}(t) = \frac{Z_2}{Z_1 + Z_2} (V_o + \Delta V_o(t))$
77	式 (4.3)	$\Delta V_{\text{sen}}(t) = \frac{Z_1}{Z_1 + Z_2} \Delta V_o(t)$	$\Delta V_{sen}(t) = \frac{Z_2}{Z_1 + Z_2} \Delta V_o(t)$
77	式 (4.4)	$\Delta V_{\text{sen}}(s) = \frac{Z_1(s)}{Z_1(s) + Z_2(s)} \Delta V_o(s)$	$\Delta V_{\text{\tiny SCET}}(s) = \frac{Z_2(s)}{Z_1(s) + Z_2(s)} \Delta V_o(s)$

頁	行	誤	正
78	式 (4.5)	$H(s) = \frac{\Delta V_{sco}(s)}{\Delta V_{o}(s)} = \frac{Z_{1}(s)}{Z_{1}(s) + Z_{2}(s)}$	$H(s) = \frac{\Delta V_{sco}(s)}{\Delta V_{o}(s)} = \frac{Z_{2}(s)}{Z_{1}(s) + Z_{2}(s)}$
78	式 (4.7)	$Z_2(s) = \frac{sC}{1 + sCR_2}$	$Z_2(s) = \frac{R_2}{1 + sCR_2}$
79	式 (4.8)	$H(s) = \frac{\frac{sC}{1 + sCR_2}}{R_1 + \frac{sC}{1 + sCR_2}} = \frac{sC}{R_1 + sC\left(1 + R_1R_2\right)}$	$H(s) = \frac{\frac{R_2}{1 + sCR_2}}{R_1 + \frac{R_2}{1 + sCR_2}} = \frac{R_2}{R_1(1 + sCR_2) + R_2}$
102	表 5-1 下から 2 段目	電圧 - 自比率変換ゲイン	電圧 - 時比率変換ゲイン
	D = 00	$G_{DV_{a}}(s) = \frac{\Delta V_{o}(s)}{\Delta D(s)} \Big _{\Delta V_{o}(s)=0} = \frac{1}{D^{13}} \frac{-s^{2}LCr_{c}I_{o} + s(D^{*}Cr_{c}V_{in} - LI_{o}) + D^{*}V_{in}}{P(s)}$ $= \frac{1}{D^{13}} \frac{D^{*}V_{in} \left\{-s^{2} \frac{LCr_{c}I_{o}}{D^{*}V_{in}} + s\left(Cr_{c} - \frac{LI_{o}}{D^{*}V_{in}}\right) + 1\right\}}{P(s)}$	$G_{DV_o}(s) = \frac{\Delta V_o(s)}{\Delta D(s)} \Big _{AV_o(s)=0}^{AV_o(s)=0} = \frac{1}{D^{cs}} \frac{-s^2 L C r_c I_o + s \left(D^* C r_c V_{in} - L I_o\right) + D^* V_{in}}{P(s)}$ $= \frac{1}{D^{cs}} \frac{D^* V_{in} \left\{ -s^2 \frac{L C r_c^* I_o}{D^* V_{in}} + s \left(C r_c - \frac{L I_o}{D^* V_{in}}\right) + 1 \right\}}{P(s)}$
107	式 (5.36)	$= \frac{1}{D^{13}} \frac{\frac{m}{P(s)}}{\frac{P(s)}{D^{12}}}$ $= \frac{V_{in}}{D^{12}} \frac{\left(1 + \frac{s}{\omega_{ext}}\right) \left(1 + \frac{s}{\omega_{RHP} - z}\right)}{P(s)}$	$= \frac{1}{D^{13}} \frac{\left(\frac{1 + \frac{s}{m}}{P(s)}\right)}{P(s)}$ $= \frac{V_{10}}{D^{12}} \frac{\left(1 + \frac{s}{\omega_{exr}}\right)\left(1 - \frac{s}{\omega_{RIIP} - Z}\right)}{P(s)}$
107	式 (5.38) から下の 説明 1 行目	右半平面の零点 ω rhp	右半平面の零点 @RHP_Z
107	4	図 5-12 にしめすように ωesr2 パターン考えられる。	図 5-12 にしめすように 2 パターン考えられる。

頁	行	誤	正
174	図 7-4(a)		
174	図 7-4(b)		
174	図 7-5		38
176	図 7-6(b)	臨界電流モード	電流臨界モード
178	図 7-8		
180	2	分母は s の 2 次式であることから 制御系は絶対安定となっている。	分子が s の 1 次式、分母が s の 2 次式であることから 制御系の安定度は比較的高くなっている。
索引		差文方程式	差分方程式
索引		入力出力電圧特性	入出力電圧特性