書籍
書籍検索
送料無料

設計技術シリーズ

ロボット用触覚センサの設計法-実用ロボット・VR・触覚ディスプレイ開発へ向けて-

著者: 大岡 昌博氏(名古屋大学)
定価: 4,950円(本体4,500円+税)
判型: A5
ページ数: 230 ページ
ISBN: 978-4-904774-91-5
発売日: 2020/12/21
正誤表

【著者紹介】

【目次】

第1章 はじめに

第2章 設計の基礎

  1. 2.1 触覚の仕組みと触覚センサ・ディスプレイ
    1. 2.1.1 触覚の仕組み
    2. 2.1.2 ロボット用触覚センサに組み込む機能
    3. 2.1.3 VR用触覚ディスプレイに組み込む機能
  2. 2.2 種々のロボット用触覚センサ
    1. 2.2.1 感圧導電性ゴム
    2. 2.2.2 静電容量
    3. 2.2.3 磁気
    4. 2.2.4 圧電効果
    5. 2.2.5 半導体
    6. 2.2.6 光および画像
  3. 2.3 種々のVR用触覚ディスプレイ
    1. 2.3.1 ハプティック・ディスプレイ
    2. 2.3.2 ドットマトリクス・ディスプレイ
    3. 2.3.3 その他の原理の触覚ディスプレイ

第3章 ロボット用三軸触覚センサの設計

  1. 3.1 原理
    1. 3.1.1 基本構造
    2. 3.1.2 光分布-力変換
    3. 3.1.3 円柱-円すい触子形
    4. 3.1.4 触子移動形
    5. 3.1.5 CT形
  2. 3.2 触子の設計
    1. 3.2.1 接触変形解析
    2. 3.2.2 有限要素法による触覚センサの設計
    3. 3.2.3 接触面積VS輝度値の積分値
  3. 3.3 ソフトウェアの設計
    1. 3.3.1 処理の流れ
    2. 3.3.2 OpenCV
    3. 3.3.3 重心計算
    4. 3.3.4 オプティカルフロー
  4. 3.4 評価装置の設計
    1. 3.4.1 評価項目
    2. 3.4.2 評価装置の機器構成
    3. 3.4.3 評価装置の設計例
  5. 3.5 触覚センサの設計事例
    1. 3.5.1 センサ構造
    2. 3.5.2 触子製造法
    3. 3.5.3 センシング特性

第4章 VR用触覚ディスプレイの設計

  1. 4.1 原理
    1. 4.1.1 基本構造
    2. 4.1.2 反力発生の原理
    3. 4.1.3 触覚発生の原理
  2. 4.2 発生力の設計
    1. 4.2.1 DCモータ
    2. 4.2.2 DCモータの制御法
    3. 4.2.3 圧電効果
    4. 4.2.4 バイモルフ形ピエゾアクチュエータ
  3. 4.3 回路の設計
    1. 4.3.1 PWM
    2. 4.3.2 ピエゾアクチュエータの回路
    3. 4.3.3 ピエゾアクチュエータの変位可変回路
  4. 4.4 ソフトウェアの設計
    1. 4.4.1 プログラムの流れ
    2. 4.4.2 DIO(デジタルインプット・アウトプット)
    3. 4.4.3 シフトレジスタ
    4. 4.4.4 D/Aコンバータ
  5. 4.5 設計事例
    1. 4.5.1 グリッパ搭載マニピュレータ形
    2. 4.5.2 指先呈示形触覚マウス
    3. 4.5.3 掌呈示形触覚マウス

第5章 応用例

  1. 5.1 ロボットハンド用触覚センサの応用例
    1. 5.1.1 ロボットの構造
    2. 5.1.2 ロボットが把持する紙コップへの注水実験
    3. 5.1.3 ボトルのキャップ締め実験
    4. 5.1.4 二部品の組み立て実験
    5. 5.1.5 紙めくり作業
  2. 5.2 VR用触覚ディスプレイへの応用
    1. 5.2.1 力覚と触覚融合呈示の下での仮想作業
    2. 5.2.2 形状呈示実験
    3. 5.2.3 仮想テクスチャ呈示実験
    4. 5.2.4 圧覚とせん断力同時呈示実験
    5. 5.2.5 掌呈示形触覚マウスの性能検証実験
  3. 5.3 触覚と力覚の錯覚の応用例
    1. 5.3.1 錯触
    2. 5.3.2 運動錯覚
    3. 5.3.3 疑似力触覚(Pseudo-Haptics)
    4. 5.3.4 ベルベット錯触と滑らかさ呈示
  4. 5.4 今後の応用展開
    1. 5.4.1 インフォモーション
    2. 5.4.2 感情の制御
    3. 5.4.3 触覚のGestalt
    4. 5.4.4 ヒトとロボットの触覚統合

第6章 おわりに

【参考文献】

  • Fox, S. I., Human Physiology (7th Edition), McGraw-Hill, (2002), pp.240-246.
  • 内川恵二,聴覚・触覚・前庭感覚,朝倉書店, (2008), pp. 102-103.
  • 岩村吉晃,タッチ,医学書院, (2001), pp.25-27.
  • 前野隆司,小林一三,山崎信寿,ヒト指腹部構造と触覚受容器位置の力学的関係,日本機械学会論文集 (C編), (1997),pp. 881-888.
  • M. Shimojo, Mechanical filtering effect of elastic cover for tactile sensor, IEEE Trans. on Robotics and Automation, Vol. 13, No. 1, (1997), pp. 128-132.
  • G. A. Gescheider, Psychophysics: The fundamentals, third ed., Lawrence Erlbaum Associates, (1997), pp.24-27.
  • L. D. Harmon, Automated tactile sensing, Int. J. Robotic Res., Vol. 1, No. 2, (1982), pp. 3-32.
  • H. R. Nicholls and M. H. Lee, A survey of robot tactile sensing technology, Int. J. Robotic Res., Vol. 8, No. 3, (1989), pp. 3-30.
  • M. H. Lee, Tactile sensing: new directions, new challenges, Int. J. Robotic Res., Vol. 19, No.7 (1989), pp. 636-30.
  • 江刺正喜 (監修),マイクロマシン,㈱産業技術サービスセンター,(2002), pp.663-669.
  • 三輪俊輔,振動感覚特性とその計測,日本音響学会誌,46巻2号,(1990), pp. 141-149.
  • R. S. Johansson and Å. B. Vallbo, Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin, The Journal of Physiology, Vol. 286, Issue 1, (1979), pp. 283-300.
  • 仲谷正史, 川上直樹, 舘, 高密度ピンマトリクスを利用した触覚ディスプレイのピン径・ピン間隔と形状認識率の基礎検討, 日本バーチャルリアリティ学会論文誌, Vol.14, No.3, (2009), pp. 395-398.
  • 大道武生,樋口優,大西献,極限作業ロボットマニピュレータの設計法に関する研究 (その2) -低拘束多本指マスタマニピュレータの設計法-, 日本ロボット学会誌,Vol. 16, No.7, (1998), pp.942-950.
  • 嵯峨智,出口光一郎,ダイラタント流体を利用した触覚ディスプレイの検討,日本機械学会ロボティクス・メカトロニクス講演会講演概要集,(2009), 2P1-L04.
  • 富田誠介,感圧導電ゴム・センサー,高分子,35巻,5月号,(1986) p. 475.
  • 石川正俊・下条誠,感圧導電性ゴムを用いた2次元分布荷重の中心の位置の測定法,計測自動制御学会論文集,第18巻,第7号,(1982),pp.730-735.
  • 佐藤滋,下条誠,石川正俊,対象物表面に設けた触覚センサによるフィードバック制御,製品科学研究所研究報告, No.105, (1986), pp. 15-23.
  • M. Shimojo and M. Ishikawa, Thin and flexible position sensor, J. Rob. Mech. Vol.2, No.1, (1990), pp. 38-41.
  • D. M. Siegel, S. M. Steven, M. Drucker and I. Garabieta, Performance analysis of a tactile sensor, Proc. IEEE Int. Conf. on Robotics and Automation, Vol.3, (1987), pp. 1493-1499.
  • S. Hackwood, G. Beni, L. A. Hornak, R. Wolf, and T. J. Nelson, Torque-sensitive tactile array for robotics, Int. J. Robotics Res., Vol. 2-2, (1983), pp. 46-50.
  • E. Torres-Jara, I. Vasilescu and, R. Coral, A soft touch: compliant tactile sensors for sensitive manipulation, Technical report, CSAIL, Massachusetts Institute of Technology (2006).
  • M. Tanaka, J. Leveque, H. Tagami, K. Kikuchi and S. Chonan, Development of a texture sensor emulating the tissue structure and perceptual mechanism of human fingers, Proc. IEEE International Conference on Robotics and Automation, (2005), pp. 2576-2581.
  • H. Chigusa, Y. Makino and H. Shinoda, Large area sensor skin based on two-dimensional signal transmission technology, Proc. World Haptics 2007, (2007), pp. 151-156.
  • 極限作業ロボット技術研究組合,極限作業ロボット (原子力ロボット) の研究開発,日本原子力学会誌,Vol. 34, No. 12, (1992), pp. 1108-1115.
  • 小林光男,鷺沢忍,篠倉恒樹,シリコンを構造材料とする3軸触覚センサ,電子情報通信学会論文誌C-II, J74-C-II, 5, (1991), pp. 427-433.
  • 谷泰弘,切削加工の分野で使用されるロードセルについて,生産研究,34巻6号,(1982), pp. 211-218.
  • R. S. Dahiya, A. Adami, L. Pinna, C. Collini, M. Valle and, L. Lorenzelli, Tactile sensing chips with POSFET array and integrated interface electronics, IEEE Sensors Journal, Vol. 14, No. 10, (2014), pp. 3448-3457.
  • K. Tanie, K. Komoriya, M. Kaneko, S. Tachi and A. Fujiwara, A high resolution tactile sensor array, Robot Sensors Vol. 2: Tactile and Non-Vision, Kempston, UK: IFS (Pubs), (1986), pp. 189-198.
  • H. Maekawa, K. Tanie, K. Komoriya, M. Kaneko, C. Horiguchi and T. Sugawara, Development of finger-shaped tactile sensor and its evaluation by active touch, Proc. of the 1992 IEEE Int. Conf. on Robotics and Automation, 1992, pp. 1327-1334.
  • K. Kamiyama, K Vlack, T. Mizota, H. Kajimoto, N. Kawakami and S. Tachi, Vision-based sensor for real-time measuring of surface traction fields, IEEE Computer Graphics and Applications, Vol. 25, No.1, (2005), pp. 68-75.
  • Y. Ito, Y. Kim, C. Nagai and, G. Obinata, Contact state estimation by vision-based tactile sensors for dexterous manipulation with robot hands based on shape-sensing, International Journal Advanced Robotic Systems, Vol. 8, No. 4, (2011), pp. 225-234.
  • Y. Ito, Y. Kim and, G. Obinata, Robust slippage degree estimation based on reference update of vision-based tactile sensor, IEEE Sensors Journal, Vol. 11, Issue 9, (2011), pp. 2037-2047.
  • 牧野泰才,前野隆司,ハプティック・インタフェース,映像情報メディア学会誌,Vol. 64, No. 4, (2010), pp. 502-504.
  • J. K. Salisbury and M. A. Srinivasan, Phantom-based haptic interaction with virtual objects, IEEE Computer Graphics and Application, September/October, (1997), pp. 6-10.
  • 小川鑛一,加藤了三,初めて学ぶ基礎ロボット工学,東京電機大学出版局, (1997),pp. 141-146.
  • S. Grange, F. Conti, P. Helmer, P. Rouiller and, C. Baur, The delta haptic device, Eurohaptics, Birmingham, England, July, (2001).
  • 小菅一弘,川俣裕行,福田敏男,小塚敏紀,水野智夫,Stewart Platform型パラレルリンクマニピュレータのForward Kinematics計算アルゴリズム,日本ロボット学会誌,Vol. 11, No.6, (1993), pp. 849-855.
  • 武田行生,パラレルメカニズム,精密学会誌,Vol. 71, No. 11, (2005), pp. 1363-1368.
  • 立矢宏,パラレルメカニズム,森北出版,(2019),pp. 23-30.
  • 池田潔,パラレルメカニズムを利用した力覚フィードバック装置,日本ロボット学会誌,Vol. 30, No.2, (2012), pp. 168-169.
  • H. Iwata, H. Yano, F. Nakaizumi and R. Kawamura: Project FEELEX: Adding haptic surface to graphics, Proceeding of SIGGRAPH2001(2001), pp. 464-476.
  • K. Suzumori and S. Wakimoto, Intelligent actuators for mechatronics with multi-degrees of freedom, Next-Generation Actuators Leading Breakthroughs, Springer-Verlag, (2010), pp 165-176.
  • M. Goto and K. Takemura, Tactile bump display using electro-rheological fluid, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2013), pp. 4478-4483.
  • 渡辺哲也,久米祐一郎,伊福部達,触覚マウスによる図形情報の識別,映像情報メディア学会誌,Vol. 54, No.6, (2000), pp. 839-847.
  • M. Ohka, H, Koga, H., Y. Mouri, T. Sugiura, T. Miyaoka and Y. Mitsuya, Figure and texture presentation capabilities of a tactile mouse equipped with a display pad of stimulus pins, Robotica, Vol. 25-4, (2007), pp. 451-460.
  • K-U. Kyung and D-S. Kwon, Tactile displays with parallel mechanism, Parallel Manipulators, New Developments, Intech Open, (2008), DOI: 10.5772/5382.
  • P. M. Ros, V. Dante, L. Mesin, E. Petetti, P. D. Giudice and E. Pasero, A new dynamic tactile display for reconfigurable Braille: Implementation and tests, Frontiers in Neuroengineering, (2014), DOI: 10.3389/fneng.2014.00006.
  • P. M. Taylor, A. Moser and A. Creed, A sixty-four element tactile display using shape memory alloy wires, Displays 18, (1998), pp. 163-168.
  • F. Zhao, C. Jiang and H. Sawada , A novel Braille display using the vibration of SMA wires and the evaluation of Braille presentations, Journal of Biomechanical Science and Engineering, Vol. 7, No. 4, (2012), pp. 416-432.
  • T. Matsunaga, K. Totsu, M. Esashi and Y. Haga, Tactile display using shape memory alloy micro-coil actuator and magnetic latch mechanism, Displays, 34, (2013), pp. 89-94.
  • M. Shinohara, Y. Shimizu and A. Mochizuki, Three-dimensional tactile display for the blind, IEEE Transactions on Rehabilitation Engineering, Vol. 6, No. 3, (1998), pp. 249-256.
  • C. R. Wagner, S. J. Lederman and R. D. Howe, Design and performance of a tactile shape display using RC servomotors, Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS (2002), pp. 1-6.
  • M. Nakashige, K. Hirota and M. Hirose, Linear actuator for high-resolution tactile display, 13th IEEE International Workshop on Robot and Human Interactive Communication, (2004), pp. 587-590.
  • J-S. Lee and S. Lucyszyn, Micromachined, A., Refreshable braille cell, Journal of Microelectromechanical Systems, Vol. 14, No. 4, (2005), pp. 673-682.
  • Y. Kato, T. Sekitani, M. Takamiya, M. Doi, K. Asaka, T. Sakurai and T. Someya, Sheet-type Braille displays by integrating organic field-effect transistors and polymeric actuators, IEEE Transactions on Electron Devices, Vol. 54, No. 2, (2007), pp. 202-209.
  • I-M. Koo, K. Jung, J-C. Koo, J-D. Nam, J-D., Y-K. Lee and H-R. Choi, Development of soft-actuator-based wearable tactile display, IEEE Transactions on Robotics, Vol. 24, No. 3, (2008), pp.549-558.
  • F-H. Yeh and S-H. Liang, Mechanism design of the flapper actuator in Chinese Braille display, Sensors and Actuators, A 135, (2007), pp. 680-689.
  • X. Wu, S-H. Kim, H. Zhu, C-H. Ji and M. G. Allen, A Refreshable Braille cell based on pneumatic microbubble actuators, Journal of Microelectromechanical Systems, Vol. 21, No. 4, (2012), pp. 908-916.
  • N. Torrasa, K. E. Zinoviev, C. J. Camargo, E. M. Campo, H. Campanella, J. Esteve, J. E. Marshall, E. M. Terentjev, M. Omastová, I. Krupa, P. Teplicky, B. Mamojka, P. Bruns, B. Roeder, M. Vallribera, R. Malet, S. Zuffanelli, V. Soler, J. Roig, N. Walker, D. Wenn, F. Vossen and F. M. H. Crompvoets, Tactile device based on opto-mechanical actuation of liquid crystal elastomers, Sensors and Actuators, A 208, (2014), pp. 104-112.
  • 樋口俊郎,大岡昌博 (監修),アクチュエータ研究の最前線,エヌ・ティー・エス,(2011).
  • 梶本裕之, 川上直樹, 前田太郎, 舘暲, 皮膚感覚神経を選択的に刺激する電気触覚ディスプレイ, 電子情報通信学会誌, Vol.j84-D-II, (2001),pp.120-128.
  • 大岡昌博,触覚の錯覚,狙いどおりの触覚・触感をつくる技術,サイエンス&テクノロジー,(2017), pp. 48-62.
  • 田辺健,矢野博明,岩田洋夫,非対称振動の周波数成分に対応した牽引力錯覚の知覚特性,第23 回日本バーチャルリアリティ学会大会論文集,(2018),31A-3.
  • Y. C. Fung (大橋義夫ほか2名訳),「個体の力学/理論」,培風館(1970),pp. 62-64.
  • Shinoda, H., Morimoto, N. and Ando, S., (1995). Tactile sensing using tensor cell, 1995 IEEE International Conference on Robotics and Automation, (1995), pp.825-830.
  • 大岡昌博,三矢保永,竹内修一,亀川修,有限要素法による接触変形解析に基づく光導波形三軸触覚センサの設計,日本機械学会論文集C編,61巻,585号, (1995), pp. 1949~1955.
  • 大岡昌博,三矢保永,竹内修一,亀川修,光導波形三軸触覚センサシステムの試作,日本機械学会論文集C編,62巻,598号, (1996), pp. 2250-2256.
  • M. Ohka,T. Kawamura, T. Itahashi, T. Miyaoka and Y.Mitsuya, A tactile recognition system mimicking human mechanism for recognizing surface roughness, JSME International Journal, Series C. Vol. 48, No.2, Series C, Vol.48, No.2, (2005), pp.278-285.
  • M. Ohka, J. Takayanagi, T. Kawamura and Y. Mitsuya, A surface-shape recognition system mimicking human mechanism for tactile sensation, Robotica, vol. 24, (2006), pp. 595-602.
  • M. Ohka, H. Kobayashi, J. Takata and Y. Mitsuya, An experimental optical three-axis tactile sensor featured with hemispherical surface, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 2, No. 5, (2008), pp. 860-873.
  • M. Ohka, J. Takata, H. Kobayashi, H. Suzuki, N. Morisawa and H. B. Yussof, Object exploration and manipulation using a robotic finger equipped with an optical three-axis tactile sensor, Robotics, Vol. 27, (2009), pp. 763-770.
  • M. Ohka, Y. Mitsuya, I. Higashioka and H. Kabeshita, An experimental optical three-axis tactile sensor for micro-robots, Robotica, vol.23-4, 2004, pp. 457-465.
  • M. Ohka, T. Matsunaga, Y. Nojima, D. Noda and T. Hattori, Basic experiments of three-axis tactile sensor using optical flow, 2012 IEEE International Conference on Robotics and Automation, (2012), pp. 1404-1409.
  • T. Kawashima and Y. Aoki, An optical tactile sensor using the CT reconstruction method, Electronics and Communications in Japan, Part 2, Vol. 70, No. 10, (1987), pp. 1536-1543.
  • M. Ohka, Y. Sawamoto and N. Zhu, Simulation of an optical tactile sensor based on computer tomography, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 1-3, 2007, pp. 378-386.
  • Y. Sawamoto, M. Ohka and N. Zhu, Sensing characteristics of an experimental CT tactile sensor, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 2-3, 2008, pp. 454-462.
  • 中原一郎,渋谷寿一,上田栄一郎,笠野英秋,辻知章,井上裕嗣,弾性学ハンドブック,朝倉書店,(2001),pp. 188-189.
  • 大岡昌博,三矢保永,竹内修一,亀川修,有限要素法による接触変形解析に基づく光導波形三軸触覚センサの設計,日本機械学会論文集(C編)第61巻,第585号,(1995), pp. 1949-1955.
  • M.Ohka, I. Higashioka, Y. Mitsuya, A micro optical three-axis tactile sensor (validation of sensing principle using models), Advances Information Storage Systems, Vol. 10, World scientific, publishing, Advance in Information Storage System, (1999), pp. 313-325.
  • J. Halling, Principles of tribology, The Macmillan Press, London, (1975), pp.61-65.
  • 野村由司彦,図解 情報処理入門,三ツ星出版,(2008), pp. 83-93.
  • A. Takagi, Y. Yamamoto, M. Ohka, H. Yussof and S.C. Abdullah, Sensitivity-Enhancing All-in-type Optical Three-axis Tactile Sensor Mounted on Articulated Robotic Fingers, Procedia Computer Science, 76 (2015), pp. 95-100.
  • M. Ohka, R. Nomura, H. Yussof and, N. I. Zahari, Development of human-finger-sized three-axis tactile sensor based on image data processing, 2015 9th International Conference on Sensing Technology, (2015), pp. 212-216
  • S. Tsuboi and M. Ohka, Flexible active touch using 2.5D display generating tactile and force sensations, ICIC Express Letters, Vol. 6, Issue 12, (2012), pp. 2995-3000.
  • S. Tsuboi, M. Ohka, H. Yussof, A. K. Makhtar and S. N. Bashir, Object handling precision using mouse-like haptic display generating tactile and force sensation, International Journal on Smart Sensing and Intelligent Systems, Vol. 6, No. 3, (2013), pp. 810-832.
  • 松井信行,アクチュエータ入門,オーム社,(2000).
  • アクチュエータ技術企画委員会,アクチュエータ工学,養賢堂,2004. pp. 21-30.
  • 岡崎清,セラミック誘電体工学 (強誘電体物理学演習補足) -第4版-,学献社,(1992), pp. 319-330.
  • 大橋義男,材料力学,培風館,(1976), pp. 184-185およびp. 346.
  • 大岡昌博・古谷克司,第2章圧電アクチュエータ,アクチュエータ研究開発の最前線,NTS,(2011),pp. 29-38.
  • M. Ohka, K. Esumi and Y. Sawamoto, Two-axial piezoelectric actuator controller using multi-layer artificial neural network featuring feedback connection for tactile displays, Advanced Robotics Vol. 26 No. 3-4, (2012), pp. 219-232.
  • 大岡昌博,毛利行宏,杉浦徳宏,三矢保永,古賀浩嗣,分布圧覚ディスプレイ装置による仮想形状呈示,日本機械学会論文集 (C編),69巻682号,(2003), pp. 1719-1726.
  • 大岡昌博,古賀浩嗣,宮岡徹,三矢保永,高密度ピンアレイ形触覚マウスによる格子状仮想テクスチャ呈示 (第1報:高密度ピンアレイ形触覚マウスの試作と性能評価実験法の確立),日本機械学会論文集 (C編),71巻711号,(2005), pp.3174-3180.
  • 大岡昌博,古賀浩嗣,宮岡徹,三矢保永,高密度ピンアレイ形触覚マウスによる格子状仮想テクスチャ呈示 (第2報:触知ピン間隔,テクスチャ密度および畝高さの検討),日本機械学会論文集 (C編),72巻715号,72巻715号,(2006), pp.865-871.
  • 大岡昌博,加藤圭太郎,藤原健洋,三矢保永,圧覚と力覚の複合ディスプレイ装置の試作,電気学会論文誌E,Vol. 126, No.4,(2006), pp. 150-157.
  • M. Ohka, K. Kato, T. Fujiwara, Y. Mitsuya and T. Miyaoka, Presentation capability of compound displays for pressure and force, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 2, No. 1, (2008), pp. 24-36.
  • Y. Zhou, X-H. Yin and M. Ohka, Evaluation of pressure-slippage-generating tactile mouse using edge presentation, Journal of Computer Science, 7(10), (2011), pp. 1448-1457.
  • Y. Zhou, X-H. Yin and M. Ohka, Virtual figure presentation using pressure-slippage-generation tactile mouse, International Journal on Smart Sensing and Intelligent Systems, Vol. 4, No. 3, Sep. 2011, pp. 454-466.
  • 坂巻克己,塚本一之,岡村浩一郎,内田剛,小勝ゆかり, "2 次元リニア・アクチュエータを用いた触覚呈示システム" , ヒューマン・インターフェイス学会研究報告集, Vol. 1, No.5 ,(1999),pp. 83-86.
  • H. Komura and M. Ohka, Edge angle perception precision of active and passive touches for haptic VR using dot-matrix display, Bulletin of the JSME, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol.13, No.3, (2019), pp. 1-11
  • H. Yussof, J. Wada and M. Ohka, Sensorization of robotic hand using optical three-Axis tactile sensor: evaluation with grasping and twisting motions, Journal of Computer Science, 6(8), 2010, pp. 955-962.
  • M. Ohka, N. Morisawa, H. Suzuki, J. Takada, H. Kobayashi and H. Yussof, A robotic finger equipped with an optical three-axis tactile sensor, Proc. of IEEE Inter. Conf. on Robotic and Automation, (2008), pp. 3425-3430.
  • J. J. Gibson, The ecological approach to visual perception, Houghton Mifflin Company, (1979).
  • M. Ohka, N. Hoshikawa, J. Wada and H. B. Yussof, Two methodologies toward artificial tactile affordance system in robotics, International Journal on Smart Sensing and Intelligent Systems, Vol. 3, No. 3,(2010), pp.466-487.
  • M. Ohka, S. C. Abdullah, J. Wada and H. B. Yussof, Two-hand-arm manipulation based on tri-axial tactile data, International Journal of Social Robotics, Vol. 4, Issue 1, (2012), 97-105.
  • K. Sugiman, M.A.M. Jusoh, M. Ohka, H. Yussof and S.C. Abdullah, Thin flexible sheet handling using robotic hand equipped with three-axis tactile sensors, Procedia Computer Science, 76 (2015), pp. 155-160.
  • Kenji Sugiman, Masahiro Ohka and Mohammad Azzeim Bin Mat Jusoh, A basic paper handling task experiment using tri-axial tactile data, Procedia Computer Science, Vol. 105, (2017), pp. 270-275.
  • M. M. Taylor, S. J. Lederman and R. H. Gibson, Tactual perception of texture, Handbook of Perception, (1973), pp.251-272.
  • 岩村吉晃,タッチ,医学書院,(2001),pp.149-152.
  • V. Hayward, A brief taxonomy of tactile illusion and demonstrations that can be done in a hardware store, Brain Research Bull., Vol. 75, No. 6, (2008), pp. 742-752.
  • 仲谷正史,梶本裕之,川上直樹,舘暉,Fishbone Tactile Illusionを通した凹凸知覚の研究,日本バーチャルリアリティ学会10回大会論文集, (2005), pp. 201-204.
  • M. Botvinick and J. Cohen, Rubber hand'feel'touch that eyes see, Nature, Vol.391, (1998), p.756.
  • 手塚康貴・松尾篤,脳卒中片麻痺患者に対するミラーセラピー,理学療法,22, (2005), 871-879
  • M. Miyazaki, M. Hirashima and D. Nozaki, The "cutaneous rabitt" hopping out of the body, Journal of Neuroscience, 30(5), (2010), pp. 1856-1860.
  • H. Mochiyama, A. Sano, N. Takasue, R. Kikuue, K. Fujita, S. Fukuda, K. Marui and H. Fujimoto, Haptic illusion induced by moving line stimuli, Proc. of World Haptic Conference, (2005), pp. 645-648.
  • 本多正計,唐川裕之,赤堀晃一,宮岡 徹,大岡昌博,卓上型運動錯覚誘発・評価装置の開発,日本機械学会論文集,Vol. 80,No. 820,(2014), DOI https://doi.org/10.1299/transjsme.2014trans0350.
  • 本多正計,唐川裕之,赤堀晃一,宮岡 徹,大岡昌博,振動刺激条件の相違が運動錯覚の誘発と知覚量に及ぼす影響,日本バーチャルリアリティ学会論文誌,Vol. 19,No. 4,(2014), pp.457-466.
  • R. Imai, M. Osumi and S. Morioka, Influence of illusiory kinesthesia by vibratory tendon stimulation on acute pain after surgery for distal radius fractures: a quasi-randomized controlled study, Clinical Rehabilitation, (2015), DOI: 10.1177/0269215515593610.
  • 加藤祐規,本多正計,宮岡徹,大岡昌博,手関節の3つの腱に生じる運動錯覚の鮮明さの相違,第20回日本バーチャルリアリティ学会大会論文集,(2015), pp. 12-13, 2015.
  • 志村知輝,小村啓,本多正計,大岡昌博,運動錯覚とラバーハンドイリュージョンの複合効果の促進法,第23年回日本バーチャルリアリティ学会大会論文集,(2018),11A-5.
  • A. Lécuyer, S. Coqillart, A. Kheddar, P. Richard and P. Coiffet, Pseudo-haptic feedback: can isometric input devices simulate force feedback? Proc. of Virtual Reality Conference, (2000), pp. 83-90.
  • F. Argelaguet, D. A. G. Jáuregui, M. Marchal and A. Lécuyer, Elastic images: perceiving local elasticity of images through a novel pseudo-haptic deformation effect, ACM Transactions on Applied Perception, Vol. 10, No. 3, (2013), https://dl.acm.org/doi/10.1145/2501599
  • S. Tsuboi and M. Ohka, A basic study of hardness cognition combining pseudo-haptics and distributed pressure display, ICIC Express Letters, Vol. 8, No. 1, (2014), pp. 103-108.
  • 横山綾亮,小村啓,坪井 諭之,大岡昌博,Pseudo-haptics と触覚刺激の複合呈示による硬さ表現能力の向上,日本機械学会論文集, Vol.84, No.868, (2018) pp. 1-8.
  • N. Rajaei, Y. Kawabe, M. Ohka, T. Miyaoka, A. Chami and H. Yussof, Psychophysical experiments on velvet hand illusion toward presenting virtual feeling of material, International Journal Social Robot, Vol. 4, (2012), pp. 77-84.
  • N. Rajaei, M. Ohka, T. Miyaoka, H. Yussof, A. K. Makhtar and S. N. Basir, Investigation of VHI affected by the density of mechanoreceptive units for virtual sensation, International Journal on Smart Sensing Intelligent Systems, Vol.6, No.4, (2013), pp.1516-1532.
  • N. Rjaei, N. Aoki, HK. Takahashi, T. Miyaoka, T. Kochiyama, M. Ohka, N. Sadato and R. Kitada, Brain networks underlying conscious tactile perception of textures as revealed using the velvet hand illusion, Human Brain Mapping, Vol.39, Issue12, (2018), pp. 4787-4801
  • N. Rajaei and M. Ohka, H. Nomura, H. Komura, S. Matsushita and T. Miyaoka, A tactile mouse generating velvet hand illusion to the human palm, International Journal of Advanced Robotic Systems, Vol. 13-5, 2016, 1-10
  • R. Kurzweil, The singularity is Near: When humans transcend biology, Viking Adult, (2005), pp. 203-226.
  • I. F. Akyildiz and M. C. Vuran, Wireless sensor networks, Wiley, (2010), pp. 17-18.
  • 岩野和生・高島洋典,サイバーフィジカルシステムとIoT (モノのインターネット) , 情報管理,Vol. 57, No. 11, (2015), pp. 826-834.
  • 矢野智昭・大岡昌博,インフォモーション工学の提案 (ビッグデータとアクチュエータの融合),近畿大学次世代基盤技術研究所報告Vol. 6, (2015), pp. 97-100.
  • 大岡昌博,小村啓,矢野智昭,インフォモーションとトライボロジー-トライボロジーを通じてアクチュエータ・センサネットワークが獲得する環境情報-,トライボロジスト,第63巻9号,(2018), pp. 580-585.
  • 大岡昌博,小村啓,インフォモーション学と感情制御,日本AEM学会誌,Vol.27, No.4,(2019), pp. 383- 389.
  • Y. Suzuki, Harness the Nature for Computation, Natural Computing and Beyond, Proceedings in Information and Communications Technology, Vol. 6, (2013), 49-70.
  • 独立行政法人 産業技術総合研究所 (監修),複雑現象工学-複雑系パラダイムの工学応用-,プレアデス出版, (2005), pp. 23-44.
  • 有田隆也,心はプログラムできるか,サイエンスアイ新書,(2007), pp. 109-176.
  • S. Shimoda and H. Kimura, Biomimetic approach to Tacit Learning based on compound control, IEEE Transactions on Systems, Man, and Cybernetics - Part B, Vol. 40, No. 1, (2010), pp. 77-90.
  • K. Koffka, Principles of Gestalt psychology, Routledge & KEGAN PAUL LTD, (1935).
  • W. Kohler, The task of Gestalt psychology, Princeton Legacy Libraly, (1969).
  • S. Handel, Listening: An introduction to the perception of auditory events, MIT PRESS, (1989).
  • G. カニッツァ, カニッツァ視覚の文法―ゲシュタルト知覚論, サイエンス社, (1985).
  • 和氣洋美・和氣典二,再び,触覚にも主観的輪郭の効果はあるのか,神奈川大学心理・教育論集,15巻,pp. 27-61, (1996).
  • 小村啓,大岡昌博,滑らかさを惹起する触覚のGestaltに関する基礎調査,TVRSJ Vol. 24, No. 1, (2019), pp. 43-51.
  • H. Komura, T. Nakamura and M. Ohka, Formulation of tactile Gestalt to express varation in velvet hand illusion caused by out-of-phase cycles, Bulletin of the JSME, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 14, Vol. 6, (2020), DOI:10.1299/jamdsm.2020jamdsm0088.
  • 鈴木泰博,触譜とインフォモーション―インフォモーションのための,新しい触覚学, Tactileology の創成に向けて―,トライボロジスト,第63巻9号,(2018), pp. 593-598.
  • Gescheider, G. A., Psychophysics: The Fundamentals, Third ed., Lawrence Erlbaum Associates, (1997), pp.24-27.
  • 伊福部達,触知ボコーダにおける最大伝達情報、医療電子と生体工学,第17巻,第3号,(1979), pp. 27-30.

【口コミ】

  • ※口コミはありません。
ページトップへ戻る